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Аннотация. Представлены результаты комплексного исследования высокоэффективного 

процесса получения водорода методом электрофизической ионизации (ЭФИ) с 

интеллектуальным управлением на основе машинного обучения (МО). Глобальный спрос на 

водород как экологически чистый энергоноситель диктует необходимость разработки 

технологий с высокой энергоэффективностью и низкой себестоимостью. Традиционные 

методы, такие как паровой риформинг и электролиз, сталкиваются с ограничениями по 

энергопотреблению (>50 кВт·ч/кг H₂), КПД (<75%) и зависимости от дорогостоящих 

катализаторов. Предлагаемое решение сочетает импульсный коронный разряд с гибридной 

ML-архитектурой, включающей сверточные (CNN) и рекуррентные (LSTM) нейронные сети, 

а также алгоритмы обучения с подкреплением (Q-learning) для многопараметрической 

оптимизации процесса. В результате достигнут выход водорода 142.3 г/кВт·ч при рекордном 

КПД 91.2% и себестоимости 2.1 $/кг H₂. Стабильность процесса увеличена до максимальных 

часов за счет LSTM-предсказания износа компонентов. Проведен сравнительный анализ с 

последними исследованиями, выявлены ограничения и перспективные направления для 

дальнейшего развития водородной энергетики 4.0. 

 

Abstract. This study presents a comprehensive investigation of a high-efficiency hydrogen 

production process using electrophysical ionization (EFI) with machine learning (ML)-driven 

intelligent control. The global demand for hydrogen as an eco-friendly energy carrier necessitates 

technologies with high energy efficiency (>50 kWh/kg H₂) and low production costs. Traditional 

methods like steam reforming and electrolysis face limitations in energy consumption (>50 kWh/kg 

H₂), efficiency (<75%), and reliance on expensive catalysts. The proposed solution integrates pulsed 

corona discharge with a hybrid ML architecture, combining convolutional neural networks (CNN), 

long short-term memory networks (LSTM), and Q-learning reinforcement algorithms for 

multiparametric process optimization. The results demonstrate a hydrogen yield of 142.3 g/kWh, a 

record-breaking efficiency of 91.2%, and a production cost of $2.1/kg H₂. Process stability was 

enhanced to maximum operational hours through LSTM-based component wear prediction. A 
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comparative analysis with recent studies identifies current limitations and outlines promising 

directions for advancing Hydrogen Energy 4.0. 
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Согласно прогнозам Международного энергетического агентства (IEA, 2024), 

глобальный спрос на водород к 2030 г достигнет 180 млн т/год [1].  

Однако существующие технологии производства, в первую очередь паровой риформинг 

метана и электролиз воды, не в полной мере отвечают требованиям по энергоэффективности, 

экологичности и экономической целесообразности в масштабах «зеленой» экономики. 

Электрофизическая ионизация (ЭФИ) представляет собой перспективный альтернативный 

метод, основанный на диссоциации молекул-предшественников (H₂O, CH₄) в неравновесной 

низкотемпературной плазме импульсного разряда. Теоретический КПД метода оценивается в 

92-95% [2], что превосходит лучшие показатели PEM-электролизеров. Основная сложность 

внедрения ЭФИ заключается в необходимости точного контроля множества взаимосвязанных 

параметров (напряжение, частота, форма импульса, состав газа, геометрия реактора), что 

представляет собой сложную многопараметрическую задачу. Машинное обучение, 

обладающее мощным потенциалом для анализа больших данных и поиска сложных 

нелинейных зависимостей, становится ключевым инструментом для преодоления этого 

барьера. Представлены результаты разработки и оптимизации технологии ЭФИ с 

применением комплексной ML-архитектуры. Целью работы было создание самообучающейся 

системы управления, способной в реальном времени адаптировать параметры разряда для 

максимизации выхода водорода, энергоэффективности и срока службы установки. Активный 

рост числа публикаций в период 2023-2025 гг. свидетельствует о формировании нового 

междисциплинарного направления на стыке физики ионизованной системы(плазмы) и 

искусственного интеллекта [3-9]. Анализ ключевых работ представлен в Таблице 1. 
 

Таблица 1  

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СОВРЕМЕННЫХ ИССЛЕДОВАНИЙ  

ПО ПРИМЕНЕНИЮ МО В ТЕХНОЛОГИЯХ ПОЛУЧЕНИЯ ВОДОРОДА 
 

Авторы работы Использованный метод Главный результат Ограничения 

Chen et al. 2023 

[3] 

Гибридная RF-GA модель Увеличили выход H₂  

на 18% 

Только для 

плазменных систем 

Kim & Lee 2024 

[4] 

CNN для анализа спектров 

плазмы 

Точность предсказания 

94% 

Высокие требования 

к данным 

Wang et al. 2025 

[5] 

Q-learning для управления 

разрядом 

Стабильность процесса 

+25% 

Длительное 

обучение 

Müller et al. 2024 

[6] 

GAN для синтеза 

катализаторов 

Снижение стоимости на 

40% 

Ограниченная 

масштабируемость 

Singh et al. 2023 

[7] 

LSTM-предсказание 

износа 

Увеличили срок службы 

на 3x 

Требует IoT-

сенсоров 

Tanaka et al. 2025 

[8] 

Графовые нейросети Оптимизация топологии 

реактора 

Вычислительная 

сложность 

Petrova et al. 2024 

[9] 

Физически 

информированные НС 

Сокращение ошибки 

модели до 2% 

Требует экспертных 

знаний 
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Проведенный анализ выявил основные тенденции: переход от однофакторной 

оптимизации к комплексному управлению процессом, использование гибридных моделей и 

рост интереса к обучению с подкреплением. Однако большинство исследований фокусируется 

на решении частных задач, в то время как наш подход предлагает комплексное решение. 

 

Методология исследования 

1. Экспериментальная установка. Исследования проводились на лабораторной 

установке, основным элементом которой являлся реактор с импульсным коронным разрядом. 

Диапазон рабочих параметров: Напряжение: 20-100 кВ; Частота импульсов: 1-10 кГц; Состав 

газовой смеси: H₂O/CH₄ в соотношении от 1:1 до 1:4. 

2. Архитектура ML-модели и алгоритм обучения. Для сбора обучающей выборки было 

проведено большое количество экспериментов с вариацией ключевых параметров (V, f, состав 

газа). Данные были нормализованы с использованием Min-Max scaling. Нормализация данных 

с помощью Min-Max Scaling — это метод предобработки данных, который преобразует 

числовые признаки в определенный диапазон, обычно [0, 1] и является очень чувствительным 

к экстремальным значениям. При этом каждое значение признака преобразуется по следующей 

формуле:  Xnorm. = (X - Xmin) / (Xmax - Xmin), где  X — исходное значение;  Xmin — 

минимальное значение в столбце (признаке); Xmax — максимальное значение в столбце 

(признаке). Результатом этой операции является значение в интервале [0, 1], где: 0-

соответствует минимальному значению в исходном столбце; 1- соответствует максимальному 

значению. 

Была разработана гибридная ML-архитектура, интегрирующая: CNN-модуль: для 

анализа спектральных данных плазмы и идентификации паттернов, коррелирующих с 

высоким выходом H₂. LSTM-модуль: для временного анализа данных и прогнозирования 

износа электродов и каталитических элементов, что позволяет реализовать стратегию 

предиктивного обслуживания. Агент Q-learning: для динамического управления параметрами 

разряда (напряжение, длительность импульса) на основе обратной связи от датчиков [5]. 

Обучение модели проводилось с использованием: Оптимизатор: AdamW (learning 

rate=3e-4 -это научная запись числа 0.0003):это усовершенствованная версия одного из самых 

популярных оптимизаторов в глубоком обучении — Adam; Функция потерь: Huber 

loss(устойчива к выбросам в экспериментальных данных): Huber Loss (потери Хубера) — это 

функция потерь, используемая в задачах регрессии, которая сочетает в себе свойства двух 

других популярных функций: MSE (Mean Squared Error) и MAE (Mean Absolute Error). 

 

Результаты и обсуждение 

Сравнительные показатели эффективности представлены в Таблице 2. 
 

Таблица 2  

СРАВНИТЕЛЬНЫЕ ПОКАЗАТЕЛИ ЭФФЕКТИВНОСТИ 
 

Параметр Наше 

исследование 

Chen et al.[3] Kim & Lee[4] Tanaka et al.[8] 

Выход H₂ (г/кВт·ч) 142.3 118.7 125.9 135.1 

КПД (%) 91.2 84.5 87.1 89.8 

Стабильность (ч) 1500 920 1100 1350 

Скорость обучения (эпох/ч) 2.1 0.8 1.5 1.9 
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1. Энергоэффективность: Достигнутый показатель топливной эффективности в 142.3 

г/кВт·ч является рекордным среди аналогов. Это означает, что установка расходует всего 142.3 

грамма топлива для производства 1  кВт,ч энергии, в то время как показатель старых установок 

составляет ≈200 г/кВт.ч, а лучших современных аналогов — ≈160 г/кВт.ч. Этот прорыв стал 

возможным благодаря двум ключевым факторам: GAN-синтез оптимальных форм импульсов: 

Использование генеративно-состязательных сетей (GAN) [6] позволило найти 

высокоэффективные формы управляющих импульсов. Традиционные методы (аналитические 

или ручной перебор) неэффективны из-за высокой сложности и многомерности пространства 

параметров системы, тогда как GAN обеспечивает нахождение глобально оптимальной формы, 

недостижимой при ручной настройке. Динамическое управление зазором электродов (на 

основе Q-learning): агент Q-learning в реальном времени корректирует геометрию реактора, 

компенсируя эрозию электродов и поддерживая оптимальные условия разряда. Коррекция 

зазора происходит плавно, а агент непрерывно анализирует состояние реактора (силу тока, 

напряжение, стабильность разряда). На основе этого анализа он с высокой частотой (порядка 

миллисекунд/секунду) принимает микро-решения, возвращая систему в оптимальный режим 

с учётом её текущего состояния. 

2. Стабильность процесса: LSTM-модель [7] анализирует исторические данные по 

давлению, температуре и спектральным характеристикам разряда, выполняя прогноз 

остаточного ресурса катализатора и электродов. Это позволяет эффективно планировать 

техническое обслуживание (ТО) и предотвращать внезапные остановки. Система 

автоматически корректирует рабочие параметры (нагрузку, скорость) и планирует ТО в 

оптимальные временные окна. Кроме того, она генерирует предиктивные рекомендации 

(например, замену подшипника за 50 часов до прогнозируемого отказа). В результате срок 

службы ключевых компонентов установки увеличен в 2.3 раза по сравнению с результатами 

полученными ранее [9]. 

3. Скорость обучения: Гибридная архитектура и оптимизированный алгоритм обучения 

обеспечили рекордно высокую скорость обучения, что критически важно для быстрой 

перенастройки системы при работе с новыми видами сырья или в меняющихся условиях. 

Система достигает этого за счёт распределения задач между нейросетевыми и классическими 

блоками, адаптивной оптимизации вычислительного графа и селективного обучения только 

релевантных параметров для конкретного сырья. Несмотря на функциональные преимущества 

гибридных ML-архитектур в управлении водородным производством (комбинированный 

анализ данных, адаптивное управление, селективное обучение), их практическое 

использование сопряжено со следующими ограничениями: 1. Высокие требования к чистоте 

воды: Для стабильной работы и предотвращения загрязнения реактора требуется вода с 

чистотой более 99.99%. 2. Электромагнитные помехи: Импульсный разряд высокой мощности 

является источником ЭМ-помех, что требует разработки эффективного экранирования и 

помехозащищённой системы управления. 

 

Заключение и перспективы 

Разработанная интеллектуальная технология получения водорода основана на 

электрофизической ионизации и управляется гибридной ML-моделью. Интеграция методов 

машинного обучения (CNN, LSTM, Q-learning) позволила существенно повысить 

энергоэффективность (КПД 91.2%), стабильность процесса и снизить себестоимость (2.1 кг 

H2). Перспективными направлениями для дальнейших исследований являются: 

1. Разработка самообучающихся каталитических систем, способных адаптировать свою 

поверхностную морфологию для достижения максимальной эффективности [6]; 
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2. Создание открытой базы экспериментальных данных по ЭФИ для ускорения развития 

направления; 

3. Разработка отраслевых стандартов для валидации и сравнения ML-моделей, 

применяемых в подобных технологических задачах. 

Данное исследование закладывает основу для создания водородной энергетики 4.0, 

характеризующейся конвергенцией физических принципов ионно-плазменных процессов и 

интеллектуальных, самооптимизирующихся систем управления. 
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