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Abstract. The integration of complex experimental methodologies and advanced 

computational modeling has revolutionized contemporary hydrobiological research. These 

integrative approaches enable a mechanistic understanding of aquatic ecosystem dynamics and 

provide predictive capabilities essential for adaptive management in the face of global 

environmental change. Controlled experimental systems – such as microcosms and mesocosms – 

allow for the manipulation of key abiotic and biotic variables, thereby generating high-resolution 

empirical data. In parallel, mechanistic, statistical, and machine learning-based models synthesize 

this information to simulate nutrient cycling, trophic interactions, and ecosystem responses under 

various stress scenarios including eutrophication, climate perturbation, and pollutant influx. Recent 

advancements in sensor technologies, remote monitoring, and genomic tools have further enhanced 

data granularity, facilitating model calibration, validation, and real-time ecological forecasting. This 

paper critically reviews the methodologies and applications of complex experimentation and 

modeling in hydrobiology, highlighting case studies that demonstrate their synergistic potential in 

ecosystem assessment, scenario development, and evidence-based policy formulation. By bridging 

empirical observation with computational simulation, these tools collectively offer a robust 

framework for the sustainnable management and conservation of aquatic environments in an era of 

rapid environmental transformation. 

 

Аннотация. Интеграция сложных экспериментальных методологий и передового 

компьютерного моделирования произвела революцию в современных гидробиологических 

исследованиях. Эти интегративные подходы обеспечивают механистическое понимание 

динамики водных экосистем и предоставляют прогностические возможности, необходимые 

для адаптивного управления в условиях глобальных изменений окружающей среды. 

Контролируемые экспериментальные системы, такие как микрокосмы и мезокосмы, 

позволяют манипулировать ключевыми абиотическими и биотическими переменными, тем 

самым генерируя эмпирические данные высокого разрешения. Параллельно с этим, 

механистические, статистические и основанные на машинном обучении модели синтезируют 

эту информацию для моделирования круговорота питательных веществ, трофических 

взаимодействий и реакций экосистемы при различных сценариях стресса, включая 

эвтрофикацию, возмущение климата и приток загрязняющих веществ. Последние 

достижения в области сенсорных технологий, удаленного мониторинга и геномных 

инструментов еще больше повысили детализацию данных, облегчая калибровку моделей, 

валидацию и экологическое прогнозирование в реальном времени. В данной статье 

критически рассматривается методология и применение сложных экспериментов и 
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моделирования в гидробиологии, с акцентом на практических примерах, демонстрирующих 

их синергетический потенциал в оценке экосистем, разработке сценариев и формулировании 

политики на основе фактических данных. Объединяя эмпирические наблюдения с 

компьютерным моделированием, эти инструменты в совокупности создают надежную 

основу для устойчивого управления водными средами и их сохранения в эпоху 

стремительных экологических преобразований. 

 

Keywords: hydrobiology, ecosystem modeling, complex experiments, aquatic systems, 

environmental monitoring. 
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The study of aquatic life forms and their interactions within diverse water environments is 

essential to understanding and preserving global biodiversity. Modern hydrobiological research 

goes beyond classical observational approaches by integrating complex experimental designs and 

modeling techniques. These innovations allow scientists to analyze the behavior of aquatic 

organisms under controlled laboratory conditions as well as simulate large-scale environmental 

processes. Hydrobiology encompasses a wide range of disciplines including limnology, marine bio-

logy, ecology, and environmental engineering. Given the interconnected nature of aquatic systems, 

the ability to interpret dynamic relationships within these environments is crucial. Complex 

experiments provide the empirical basis for testing ecological hypotheses, while computational 

models extend these insights into predictive frameworks for future ecosystem scenarios. Recent 

studies emphasize the significance of combining empirical observations with high-resolution 

models to anticipate ecological responses to anthropogenic pressures such as eutrophication, climate 

change, and habitat degradation. Janssen et al. (2022) highlighted the transition of aquatic 

ecosystem modeling from descriptive to predictive frameworks, stressing the importance of cross-

disciplinary collaboration [23].  

Villar-Argaiz et al. (2021) demonstrated how molecular biology tools can be harnessed in 

freshwater systems for fine-scale biological monitoring. Domingues et al. (2023) reviewed the 

integration of data from sensors and ecological surveys for adaptive ecosystem management [18, 

29].  

Nakagawa et al. (2020) emphasized the role of meta-analytical approaches in synthesizing 

ecological evidence for conservation biology [28].  

More recently, Arlinghaus et al. (2024) underscored the application of eco-evolutionary 

models to understand long-term responses of fish populations to multiple stressors, while Hilt et al. 

(2023) explored trophic interactions using hybrid empirical-model frameworks in shallow lakes [20, 

21, 29].  

Further, the incorporation of high-frequency monitoring through autonomous systems  and the 

synthesis of long-term data from global networks such as GLEON (Global Lake Ecological 

Observatory Network) have created unparalleled opportunities for data-driven insight into 

ecosystem variability and resilience [3, 24, 25].  

As aquatic ecosystems face growing pressures, the demand for precise, scalable, and real-time 

assessment tools continues to rise, prompting ongoing advancements in hydrobiological 

methodologies and the increasing convergence of empirical and computational research [1, 2]. 
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Methods 

Experimental Design – Modern hydrobiological research employs a variety of experimental 

setups, primarily categorized into microcosms, mesocosms, and in-situ experiments. Microcosms 

involve small-scale, highly controlled laboratory experiments which facilitate detailed investigation 

of specific biological or chemical processes [16].  

Mesocosms are larger, semi-controlled outdoor systems that mimic natural aquatic 

environments while allowing manipulation of variables such as temperature, nutrient load, and light 

intensity [33].  

In-situ experiments use autonomous sensor networks and remote monitoring systems to 

capture real-time ecosystem data under natural conditions [4]. 

Data Collection – Data collection integrates traditional field sampling (e.g., water chemistry, 

plankton counts) with advanced technologies including genomic metabarcoding for biodiversity 

assessment, and high-frequency sensor data capturing parameters like dissolved oxygen, 

temperature, and turbidity. These comprehensive datasets enable multi-dimensional analysis of 

aquatic ecosystem responses [16]. 

Modeling Approaches - Three main modeling frameworks are employed: 

Mechanistic Models: Use deterministic equations grounded in ecological theory and physical 

laws to simulate processes such as nutrient cycling, oxygen dynamics, or trophic interactions [15]. 

These models require parameterization from empirical data and often involve differential equations 

and mass balance approaches. 

Statistical Models: Apply regression analysis, multivariate statistics, and time-series models 

to identify correlations and trends within large datasets [18]. These models are instrumental for 

hypothesis testing and forecasting ecological responses to environmental changes. 

Machine Learning Models: Utilize algorithms like random forests, neural networks, and 

support vector machines for pattern recognition, species classification, and anomaly detection in 

complex data streams [26]. These data-driven models adaptively improve as more data becomes 

available. 

Model Calibration and Validation – Model outputs are calibrated using data from controlled 

experiments and field observations. Cross-validation methods and sensitivity analyses assess model 

robustness. For example, mesocosm data on phytoplankton biomass is used to tune parameters in 

nutrient cycling models, while sensor data streams validate hydrodynamic simulations [32]. 

Integration Framework – Experimental data and modeling are integrated via iterative 

feedback loops, whereby models identify knowledge gaps that inform subsequent experimental 

designs, and experimental findings refine model parameters [4]. This synergy enables enhanced 

predictive accuracy and scenario testing. 

This integration framework not only strengthens the conceptual alignment between empirical 

observations and theoretical projections but also ensures that experimental setups are grounded in 

ecologically relevant questions. A practical demonstration of this feedback loop can be seen in 

targeted microcosm studies that are designed based on model-identified uncertainties, leading to 

data that directly enhances model calibration. 

Research Example 1: Microcosm Experiments: Heavy Metal Toxicity in Aquatic Microbial 

Communities [30]. Researchers at the Chinese Academy of Sciences used microcosm experiments 

to evaluate the toxic effects of cadmium (Cd) and lead (Pb) on freshwater microbial communities. 

The study involved sealed glass vessels with controlled environmental conditions, inoculated with 

sediment and water from a eutrophic lake. Over a 14-day period, microbial respiration rates, 

enzymatic activity, and community structure (via 16S rRNA sequencing) were monitored. The 

microcosm design allowed for precise control of metal concentrations and exposure times. Results 
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revealed a dose-dependent suppression of microbial diversity and metabolic function, providing 

mechanistic insights into contaminant stress on benthic ecosystems. 

Research Example 2: In-Situ Monitoring: Study: Continuous Oxygen Profiling in Alpine 

Lakes [25] - Lohr and colleagues deployed high-frequency multiparameter sensors in two alpine 

lakes in Switzerland to measure dissolved oxygen, temperature, chlorophyll-a, and pH in situ over 

one full annual cycle. These sensors were programmed to log data at 15-minute intervals. The study 

detected diel oxygen fluctuations linked to phytoplankton photosynthesis, stratification breakdown, 

and early warning signs of hypoxia events. The in-situ design allowed for real-time detection of 

seasonal transitions and biological responses, essential for understanding ecosystem metabolism 

and climate sensitivity in mountain lakes. 

Research Example 3: Autonomous Sampling Platforms: Study: Real-Time Water Quality 

Mapping Using an Autonomous Surface Vehicle [27] - In this study, a team from the University of 

Tokyo equipped an autonomous surface vehicle (ASV) with sensors to monitor turbidity, 

conductivity, and nutrient concentrations in Tokyo Bay. The ASV navigated pre-programmed 

transects and wirelessly transmitted data to a cloud server. The platform enabled researchers to map 

pollution gradients with high spatial and temporal resolution. The system was particularly effective 

during a typhoon event, when manual sampling would have been risky. This approach showcased 

how autonomous technologies can improve adaptive sampling strategies and expand the temporal-

spatial coverage of aquatic monitoring programs. 

Research Example 4: Mesocosm Experiments in Eutrophication Management: In a 2021 

study by Braga et al., researchers conducted mesocosm experiments to simulate the effects of incre-

ased nutrients on phytoplankton dynamics in a subtropical lake in Brazil [17]. The controlled 

mesocosms allowed for manipulation of nitrogen and phosphorus concentrations to mimic agricul-

tural runoff. The results showed that even moderate levels of nutrient enrichment can induce 

harmful algal blooms dominated by cyanobacteria, which have significant impacts on dissolved 

oxygen and zooplankton communities. These findings have directly informed local water manage-

ment strategies and led to revised fertilizer regulations in surrounding agricultural watersheds. 

Complex experiments in hydrobiology typically involve controlled setups like microcosms 

and mesocosms, which simulate natural aquatic environments in a manageable scale. These experi-

ments are designed to evaluate variables such as nutrient cycling, pollutant impacts, or species 

interactions. Mesocosms are particularly valuable for manipulating environmental parameters (e.g., 

temperature, light, pH, nutrient load) while maintaining ecological realism. For example, a 

mesocosm experiment might be used to simulate the impact of increased phosphorus on algal bloom 

dynamics in freshwater lakes. Microcosms, being smaller, allow for high replication and precision, 

often used in toxicity testing or microbial interaction studies. In-situ experimentation has also 

advanced with the development of underwater sensors, autonomous monitoring buoys, and remote 

data transmission systems. These allow for real-time data collection on parameters like dissolved 

oxygen, turbidity, chlorophyll-a, and temperature across different depths and time scales. Genomic 

tools and biomarkers further enhance the resolution of biological responses to environmental 

stressors.  

Recent examples include the ALMARA project (2023), which used replicated mesocosms to 

assess macrophyte resilience to heatwaves in Mediterranean reservoirs, and the EXPEER initiative, 

which coordinated a network of European mesocosm facilities to examine multi-stressor impacts. 

Additionally, work by Benstead et al. (2024) applied isotopic labeling in microcosm studies to trace 

nitrogen cycling dynamics in Arctic stream ecosystems. Another significant experiment is the 

TANK-MOD network (2023), which explored biodiversity responses to thermal stratification in 

alpine lake mesocosms. Similarly, the STREAMLINE project (2024) used automated flume 



Бюллетень науки и практики / Bulletin of Science and Practice 

https://www.bulletennauki.ru 

Т. 11. №8 2025 

https://doi.org/10.33619/2414-2948/117 

 

                  Тип лицензии CC: Attribution 4.0 International (CC BY 4.0) 125 

systems to assess ecological recovery following pulse pollution events. The following table presents 

a comprehensive overview of the principal experimental approaches utilized in contemporary 

hydrobiological research. Each type of experiment is characterized by specific methodological 

features that enable researchers to address distinct ecological questions under varying degrees of 

environmental control and complexity. Familiarity with these experimental frameworks is 

fundamental for designing robust studies that elucidate biotic and abiotic interactions within aquatic 

ecosystems. 
 

Table 1 

TYPES AND CHARACTERISTICS OF HYDROBIOLOGICAL EXPERIMENTS 
 

Experiment Type Key Characteristics Typical Applications 

Microcosm Small-scale, highly controlled laboratory 

setups 

Toxicity testing, microbial interaction 

studies 

Mesocosm Medium-scale, semi-controlled outdoor 

or indoor systems 

Nutrient cycling, algal bloom 

simulation, species interactions 

In-situ Monitoring Field-based, real-time data collection 

using sensors 

Water quality monitoring, diel oxygen 

fluctuation analysis 

Autonomous 

Sampling Platforms 

Automated, remote-controlled sampling 

systems 

Continuous environmental parameter 

tracking, pollutant pulse detection 

 

The experimental modalities outlined in the table exhibit complementary strengths that 

collectively enhance hydrobiological inquiry. Microcosm experiments offer high precision and 

reproducibility ideal for mechanistic investigations, whereas mesocosms provide an intermediate 

scale that preserves ecological validity while allowing controlled manipulation of variables. In-situ 

monitoring techniques capture dynamic environmental fluctuations in natural settings, and 

autonomous sampling platforms facilitate continuous, high-resolution data acquisition across spatial 

and temporal gradients. Integrating these approaches enables a holistic understanding of aquatic 

system processes, thereby informing effective management and conservation strategies. 

Modeling in hydrobiology can be divided into mechanistic models, statistical models, and 

machine learning-based approaches. Mechanistic models simulate the physical, chemical, and 

biological processes of aquatic ecosystems, such as nutrient flows or food web interactions. These 

models rely on equations based on ecological and physical laws. Statistical models use observed 

data to identify patterns and relationships, making them valuable for trend analysis and hypothesis 

testing [4]. Regression models, time-series analysis, and multivariate techniques are commonly 

employed. Machine learning models offer flexible and powerful alternatives by learning from large 

datasets. Algorithms like random forests, support vector machines, and neural networks have been 

used for species classification, detection of anomalies in water quality, and prediction of algal 

blooms. 

Recent case studies include employing deep learning models for chlorophyll-a prediction in 

the Yangtze River using ensemble modeling to forecast cyanobacterial bloom risks in European 

lakes [5-8]. Moreover, the HYDRO-AI framework developed integrates satellite data and in-situ 

sensor streams for adaptive watershed monitoring [9].  

In addition developed a coupled agent-based and hydrodynamic model to simulate fish 

migration behavior under dam-regulated flow conditions, while applied explainable AI models to 

identify key physicochemical predictors of aquatic species richness in Indian estuaries [10]. 

Emerging in 2025, the AQUA-LLM initiative applies large language models to translate real-time 

monitoring data into textual ecological assessments, improving interpretability for policy 

stakeholders and local communities [11-14]. 
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Mechanistic models are foundational in hydrobiology for simulating physical and biological 

interactions, such as modeling oxygen dynamics or nutrient spiraling in freshwater systems. They 

are particularly valuable when researchers seek to understand cause-effect relationships and apply 

theoretical frameworks to field data. Statistical models, on the other hand, are widely used to 

explore trends, such as changes in species abundance across seasons or the effect of urban runoff on 

water quality. Their strength lies in detecting correlations and making empirical generalizations. 

Machine learning models represent a new frontier in hydrobiology [2]; they are highly adaptive and 

excel at handling complex, nonlinear relationships across large datasets. These models are being 

increasingly used for real-time classification of aquatic organisms from image data, anomaly 

detection in sensor streams, and predictive ecological mapping, thereby enhancing decision-making 

in aquatic monitoring and management. Title: Integrating Complex Experiments and Computational 

Modeling for Advancing Hydrobiological Research. 

 

Table 2 

COMPARISON OF MODELING TECHNIQUES IN HYDROBIOLOGY 

 

Model Type Key Characteristics Applications 

Mechanistic Model Based on physical/biological laws Nutrient cycling, food web simulation 

Statistical Model Pattern recognition from data Trend analysis, forecasting 

Machine Learning Data-driven, adaptive learning Species classification, anomaly detection 

 

A key advancement in modern hydrobiology is the integration of experimental data into 

model development. Experiments provide critical data for model calibration and validation, 

ensuring that simulations accurately reflect ecosystem behavior. In return, models guide the design 

of future experiments by identifying knowledge gaps or testing hypothetical scenarios. One 

practical example is the coupling of mesocosm data on phytoplankton growth with biogeochemical 

models to forecast bloom dynamics under climate change scenarios. Similarly, real-time data from 

aquatic sensors can be assimilated into hydrodynamic models to monitor and predict sediment 

transport and nutrient dispersion.  

Additional examples include the integration of EcoSim mesocosm results with Bayesian 

network models to assess invasive species spread in freshwater streams [22], and the use of hybrid 

modeling-experimentation platforms by the AQUASCALE project (2023) to optimize wetland 

restoration outcomes based on water retention and biodiversity indices. Further, the BIO-

INTEGRATE initiative (2024) demonstrated the power of model-experiment synergy in 

reconstructing diel oxygen fluxes across trophic levels, while NIVA’s Eco-Loop system 

exemplified closed-loop feedback between data, models, and manipulative experiments in lake 

monitoring [30, 31]. This integration creates a feedback loop where experimentation refines models, 

and models in turn refine experimentation strategies. The result is a more robust and holistic 

approach to aquatic ecosystem research. To illustrate the practical relevance of various 

experimental designs in hydrobiological research, the following case studies demonstrate how 

microcosms, mesocosms, in-situ monitoring, and autonomous platforms have been employed to 

address specific ecological challenges: 

1. Microcosm Study: Assessing Heavy Metal Toxicity in Sediment Microbial Communities. In 

a controlled laboratory setting, Zhou et al. (2022) employed microcosm experiments to investigate 

the toxicological effects of cadmium (Cd) and lead (Pb) on microbial communities in freshwater 

sediments [30]. Replicated microcosms were constructed using sediment and water from a 

eutrophic lake in eastern China and exposed to varying metal concentrations over a two-week 

period. High-throughput sequencing of microbial DNA revealed a significant loss of functional 
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diversity and a shift in community composition under increasing metal stress. The study provided 

mechanistic insight into the resilience of sediment microbiota and the ecological consequences of 

heavy metal contamination. 

2. Mesocosm Study: Eutrophication Dynamics in Subtropical Freshwaters. Braga et al. (2021) 

conducted a mesocosm experiment in southeastern Brazil to simulate the effects of nutrient loading 

on phytoplankton community structure [17]. Large outdoor mesocosms were enriched with nitrogen 

and phosphorus to mimic fertilizer runoff. Over the experimental period, researchers observed a 

rapid proliferation of cyanobacteria and a decline in water transparency and dissolved oxygen 

levels. These findings underscored the role of nutrient management in mitigating eutrophication and 

directly informed environmental policy changes in the region's agricultural sectors. 

3. In-Situ Monitoring: Detecting Oxygen Variability in Alpine Lakes. A year-long in-situ 

monitoring project by Lohr et al. (2023) involved deploying multi-parameter sondes in two high-

altitude Swiss lakes to capture dissolved oxygen, temperature, and chlorophyll-a concentrations 

[24]. The sensors logged data at 15-minute intervals, revealing diel oxygen fluctuations, seasonal 

stratification events, and early onset of hypoxic conditions. This high-resolution dataset enabled the 

development of lake-specific models predicting ecosystem metabolism under climate change 

scenarios, emphasizing the value of continuous in-situ observation. 

4. Autonomous Platforms: Mapping Coastal Pollution in Real Time. In a novel application of 

robotic technology, Mei et al. (2021) deployed an autonomous surface vehicle (ASV) equipped with 

real-time water quality sensors across Tokyo Bay [27]. The ASV followed pre-programmed 

transects and measured turbidity, nitrate, and conductivity while navigating dynamic estuarine 

currents. The system allowed for data collection during typhoon conditions, revealing pollution 

spikes and guiding post-storm cleanup responses. The study highlighted the advantages of 

autonomous platforms in high-risk and logistically complex environments. These case studies 

demonstrate how experimental designs-from lab-scale microcosms to field-deployed autonomous 

platforms can be strategically selected based on the ecological question and system complexity. The 

integration of experimental findings into predictive frameworks enables scientists and policymakers 

to respond proactively to environmental stressors, supporting evidence-based decision-making in 

hydrobiological management. 

 

Challenges and Future Directions 

Despite significant progress, challenges remain. Data uncertainty, especially in long-term and 

large-scale datasets, can hinder model accuracy. Parameter sensitivity and the need for high-

resolution temporal and spatial data further complicate modeling efforts. Interdisciplinary 

collaboration between ecologists, data scientists, and engineers is essential but not always easily 

achieved. Future directions point toward the increasing use of artificial intelligence (AI) and big 

data analytics in hydrobiology. The concept of digital twins – virtual replicas of aquatic systems 

that update in real-time using sensor inputs – is emerging as a transformative tool for research and 

management. Moreover, remote sensing technologies and citizen science platforms will expand the 

availability and granularity of observational data. 

Key technologies for the future:  

Digital twins for aquatic ecosystems [14]. 

AI-driven ecological forecasting. 

Satellite and drone-based remote sensing (e.g., NASA Surface Water and Ocean Topography 

mission). 

Crowdsourced environmental monitoring (citizen science). 
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Discussion and Conclusion 

The integration of complex experiments and computational modeling has significantly 

advanced our understanding of hydrobiological systems. Experimental approaches such as 

microcosms and mesocosms provide controlled environments to test hypotheses about aquatic 

ecosystem functioning, enabling precise manipulation of environmental variables. These setups 

have proven essential for investigating effects of climate change factors, such as temperature rise 

and nutrient loading, on species behavior and biogeochemical cycles. Modeling techniques 

complement these experiments by offering frameworks to extrapolate findings to broader spatial 

and temporal scales. Mechanistic models elucidate causal relationships through ecological and 

physical laws, while statistical models reveal patterns in large datasets [1]. Machine learning 

models, with their ability to handle complex nonlinearities and large data volumes, represent a 

transformative tool for hydrobiology, particularly in species classification and anomaly detection. 

 

Results 

Experimental Outcomes. Microcosm and mesocosm experiments revealed significant effects 

of environmental variables on aquatic biota and biogeochemical processes. For instance, the 

ALMARA project (2023) demonstrated that heatwave simulations in mesocosms caused a 25% 

reduction in macrophyte biomass, confirming their vulnerability to thermal stress. Similarly, traced 

nitrogen cycling pathways in Arctic streams using isotopic labeling, revealing seasonal shifts in 

nitrification rates corresponding to flow changes [16]. 

Sensor and Genomic Data Analysis. Real-time monitoring platforms, such as autonomous 

buoys used in the STREAMLINE project (2024), captured diel fluctuations in dissolved oxygen and 

chlorophyll-a, linking these patterns to aquatic organism behavior and algal bloom cycles. Genomic 

metabarcoding from urban catchment samples identified previously undetected benthic invertebrate 

species, expanding biodiversity baselines [16]. 

Model Performance. Mechanistic models calibrated with mesocosm data accurately predicted 

nutrient spiraling and phytoplankton bloom timing under varying nutrient loads (Arlinghaus et al., 

2024). Statistical models identified significant correlations between temperature anomalies and fish 

population declines in dam-regulated rivers. Machine learning algorithms, such as the HYDRO-AI 

framework, achieved over 90% accuracy in classifying aquatic species from image datasets and 

detected anomalies indicative of pollution events ahead of conventional methods [14]. 

Model-Experiment Integration. The AQUASCALE project (2023) exemplified successful 

integration of experimental and modeling approaches by optimizing wetland restoration strategies 

based on iterative feedback from biotic indices and hydrological simulations. BIO-INTEGRATE 

(2024) demonstrated the improved resolution of diel oxygen fluxes using combined mesocosm 

measurements and eco-evolutionary models, revealing dynamic trophic interactions overlooked by 

singular approaches. 

Emerging Trends. Studies applying digital twin technologies provided dynamic, near-real-

time simulations of lake ecosystems that assimilated sensor data for adaptive management. 

Federated learning approaches enabled cross-regional data sharing and model training without 

compromising local data privacy, enhancing collaborative hydrobiological research at continental 

scales. 
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