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Abstract. In this paper, a constructive scheme of the experimental device is proposed, and
the principle of its operation is described in detail. The power circuit of the device has been drawn
up. Complex impedance, frequency function, amplitude frequency characteristic and phase-
frequency characteristic are obtained by mathematical transformation of the power circuit.
The frequency response of the circuit is constructed. As a result of the calculations, we will obtain
the amplitude frequency response and the phase frequency response. Using the found values of
the characteristics, we will build graphs and draw conclusions about how the characteristics depend
on the change in parameters and why the graph lines of the graphs are exactly the way they are.

Annomayus. llpennoxkeHa KOHCTPYKTHBHAs CX€Ma OSKCIEPUMEHTAIBHOIO YCTPOMCTBa U
nofipoOHO omucaH HpuUHOMN ero paborsl. CocraBieHa CHIOBas cxema ycTpoicTta. Ilyrem
MareMaTu4eckoro mpeoOpa3oBaHus CUIOBON IENH MOTYy4YeHbl KOMIUIEKCHBIH MMIIEAAHC, YAaCTOTHAS
GyHKIMS, aMIUTUTYIHO-4aCTOTHAs XapaKTepUCTUKA U (Pa30-4acToTHas XxapakrepucTtuka. [Toctpoena
YacTOTHAsl XapaKTEepUCTUKa ILenu. B pesyabrare pacuyeToB MOJYYUM AMILTUTYJIHO-YAaCTOTHYIO
XapaKTEepUCTUKY U (Pa30-4aCTOTHYIO XapaKTepuCTHKY. [Io HalileHHbIM 3HAYEHUSM XapaKTepUCTHK
MOCTPOUM TpadUKUd W CAETaeM BBIBOJBl O TOM, KaK 3aBHCAT XapaKTEPUCTUKU OT H3MEHEHUs
napaMeTpoB U MOYEMY JIMHUU TpapUKOB UIMEHHO TaKUe, KaKhe OHU €CTb.
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In recent years, with the growth of the national economy, the continuous deterioration of the
world's environmental problems and the enhancement of people's awareness of environmental
protection, clean and efficient energy use technology has been developed at a high speed. With the
efficiency of traditional thermal power generation approaching the technical limit, the research
hotspot towards the use of new power cycle system to gradually replace the existing traditional
thermal power technology. The Brayton cycle is one of the current research topics in the field of
thermal engineering, with high development prospects, and its potential applications are vast,
including energy, environmental protection and military fields, so it has an important research
significance. The Brayton cycle with different circulating masses has been studied and applied in a
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large number of applications [1-8]. At present, the more widely used ones are air Brayton cycle,
nitrogen Brayton cycle and supercritical carbon dioxide (S-CO,) Brayton cycle.

The operating principle of the gas turbine is largely based on the Brayton cycle. The original
Brayton engines used piston compressors and piston expanders, but more modern gas turbine
engines and blown jet engines also follow the Brayton cycle. Although the cycle usually operates as
an open system (and indeed must if internal combustion is used), for the purposes of
thermodynamic analysis it is usually assumed that the exhaust gases are reused in the intake air, and
therefore the Brayton cycle, which is analysed as a closed system, consists of four processes: 1) the
process of medium entropy compression (or adiabatic compression) in the compressor. 2) the
process of constant pressure heating in the combustion chamber. 3) the process of medium entropy
expansion (or adiabatic expansion) in the turbine. (or adiabatic expansion) process. 4) Constant
pressure exothermic process in the atmosphere.

The working process of gas turbine: the compressor (i.e.compressor) continuously inhales air
from the atmosphere and compresses it; the compressed air enters the combustion chamber, mixes
with the injected fuel and burns to become high temperature gas; then it flows into the gas turbine
and expands to do work to push the turbine impeller to rotate with the compressor impeller; the
work capacity of the high temperature gas is significantly increased after heating, thus the gas
turbine drives the compressor at the At the same time, there is still surplus work as the output
mechanical work of the gas turbine [9-10].

The operating principle of conventional coal power steam turbine is mainly based on the
Rankine cycle, an ideal cyclic process using water vapour as the work material, which mainly
consists of isentropic compression, isobaric heating, isentropic expansion, and an isobaric
condensation process used in the power cycle of a steam plant. The steam turbine operates in a
process in which the steam generated from the boiler flows into the steam turbine, expands in the
steam turbine to do work, and pushes the turbine to rotate to output mechanical work [11].

The gas turbine combusts and produces work in one unit, and its maximum output depends on
the design of the unit system itself (stereotyped products and conventional configurations) and the
boundary conditions external to the unit at the time of operation (the main influencing factors are
the ambient atmospheric pressure, gas turbine inlet temperature, inlet humidity and fuel
characteristics). Unlike conventional coal power turbine units, the gas turbine output is limited by
the maximum output of the gas turbine itself, and the power available from the gas turbine will
gradually decrease as the unit ages (its power supply capability is also variable with ambient
temperature and fuel fluctuations). Conventional coal power units are sized according to the BMCR
(Boiler Maximum Continuous Operation) operating condition due to the boiler selection stage of
the main engine of the power station, which corresponds to the VWO (Valve Fully Open) operating
condition of the steam turbine. The turbine VWO condition is based on the TMC (turbine maximum
continuous operation) condition of the turbine, which should take into account the appropriate
margin (mainly the aging of the unit). Conventional coal power units are guaranteed to have stable
maximum output and power supply capacity throughout their design life (their power supply
capacity is also guaranteed during ambient temperature and fuel fluctuations).

Unit Description for Simulation

The experimental setup works as follows. The hot water or steam produced by the boilers 1
and 2 reaches the hydraulic accumulator 7 through the damping valve 6, the pipe, the check valve 4
and the pump 5. When the damping valve 6 is closed at a certain moment, a wave of reverse motion
is produced, which enters the hydraulic accumulator along the line of the boiler 2, the boiler 1, the
pipe 3, the check valve 4 and the pump 5, and at the same time, the pressure in the hydraulic
accumulator is increased, and the kinetic energy is converted into potential energy.
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After injecting coolant into the circuit, pump 5 turns on. When the set flow rate is reached
(more than 1 m/s), the impact valve 6 closes. With the rapid closing of the shock valve 6, the kinetic
energy of the water is converted into potential energy and the pressure in front of the shock valve 6
increases (point a). Next, the pressure-increasing wave will flow in the opposite direction from
point a to point B. The wave will then flow through boiler 1 and boiler 2, and it will then flow in the
opposite direction. It will increase heat transfer through Boiler 1 and Boiler 2.

[ ——

— ) S—

/
{ ; 7

Figure 1. An experimental installation: 1 - boiler; 2 - boiler; 3 - pipeline; 4 - check valve; 5 - pump; 6
- shock value; 7 - hydraulic accumulators

X
L

In the course of the study, for a better understanding of the scheme, it was decided to study 2
characteristics of hydraulic and thermal, in order to better understand the nature of the forces arising
and to more accurately determine the required parameters on the obtained model. In the first power
circuit the hydraulic characteristics at the moment of closing of the shock valve is considered. This
circuit contains 3 elements.

m r m, >
P P - P, { ! ! P, 2 P, I;l P,
v V, v, VY, % ¥
I
Figure 2. Hydraulic circuit
The circuit link equations:
P=mV, +rV,” +mV, + V> +P, (1)
V=|P+V

Black box:
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V(5] - P435) -

Figure 3. black box for hydraulic energy circuit

Equations for Ps, Py, P, Py:

Py =Py +P, ()
P,=rV.2+P, €)
P =rV2+P, (4)
P,=mV,+P, )
Equations for V;:

V, =V, +V, (6)
Vi =V + 2\/10\71 )
V, =V ®)

Equation for P:
P = (1, +[,)V2 +2(, + )V, Vi -+ (M + M)V, + P, + P, )

Equation for P:
I5:2(rl+rz)Vlo\/;1+(ml+mz)\'7'1+F_'>4 (10)

Equation for V:
V =1, P+V 1= (m, +m,V, + 21, (1, + 1V, V, +V, +V, + 1P, (a1

Equation for images:

(a5 +a,5+a,)V,(s) =—(bs)P,(s) (12)

Complex resistance Z(s):

Z(S):alser_azss+a3 (13)
Coefticients:
a, =l (m+m,) (14)
a, =2l (L +1,)Vy (15)
a; =1 (16)
a, =2nVs, (17)
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b=1, (18)
Frequency function of the circuit:
s jQ, j2=-1 (19)
, —a % +a,jQ+a, (-a0Q°+a,jQ+a,)bjQ (20)
Z(jQ)= 8 = 2 -
—bjQ —bjQAxbjQ
_ —a,bjO* —a,bO? +a,hj0
- b%Q)?
We derive the real part of the complex resistance:
. -a,bQy? 21
Re(J6) =iy -

We derive the imaginary part of the complex resistance:

—a,bQ® +a,bQ j (22)

Im(jQ) = 0202

We obtain the amplitude-frequency function of the energy circuit:

A(jQ) = JRe?(jO) - Im? () (23)

Get the phase-frequency function of the energy circuit:

Im(jQ) (24)
Re(j€2)

o(jQ) =—arctg

Heat transfer energy circuit

a f n 4 f ,21 f f A f
g o gLag 7 gLg 77 ¢

Figure 4. Heat transfer energy circuit

The circuit link equations:

t=rq+r,qg, +1,d,+, (25)
q=ct +ct,+a,
Black box:

Q2(5) = T3(S) =

Figure 5. Black box for heat transfer
Equations for t3, ty, t;:
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t,=t, +§ (26)
t, =n0, +1, (27)
L=ng+, (28)

Equations for g5, q4:

0y =g +0, (29)
Oy =C,t, +0, (30)

Equations for t;:
by =0y + 130, +1y +1 @31

Equations for t'z:
t, =rd,+t (32)

Equations for q:
0 =Ct +Cty +0, =G0 +City +Cilyt, +Cifs + G+, (33)

Equations for t:
t=rq+r,q,+rq,+; (34)

=I1,1,C,C,0,+(NN,C + 1LC +1C, +1,1,C,)T ,+(1 +1, +1,)T,
(8, )G + (G, +1C, +1,C, )T+ + 10y + 1,050 + 1300+
Equation for images:

(b,s? +b,5+b,)Q,(s) =—(a,5* +a,5+a,)T,(S) (35)

Complex resistance Z(S):

2(5) = (bs®+h,s+h,) (36)

(8,57 +a,5+2)

Coefticients:

8 =hhRGGC, (37)
a, =1,C, +1,C, +T,C, (38)
a;=1 (39)
b, =rr,r,cc, (40)
b, =11,C + L1C + 1C, + 1,I5C, (41)
D=1 +1,+1, (42)

Frequency function of the circuit:
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s j0, [P =1 43)
2_h,iQ— 44
Z(jQ)= blﬂz szQ b, _ (44)
-, Q" +a, JQ+a,
(-abQ’ + @b, —ab) j° + @b + ahy —a,b,)Q + (b, ~ab,) jQ-ah,)
(-3 Q% +a, jQ+a,)(—aQ% -a, jQ+a,)
We derive the real part of the complex resistance:
Re(jQ) = —a,b Q" +(ab; +ab —a,b,)0? (45)
(a0’ +a,jQ+a,)(—a 0% -a,jQ+a,)
We derive the imaginary part of the complex resistance:
(i) -0 EDI0’ (e, _ab 0 40
(—a Q% +a, jQ+a,)(-a,Q% -a, jQ+a,)
We obtain the amplitude-frequency function of the energy circuit:
A(jQ) = Re?(jQ) + Im?(jC2) (47)
Get the phase-frequency function of the energy circuit:
. Im(jQ) (48)
Q) =-—arct :
o(iQ) 9 Re(i0)
Results and discussion
The known conditions:
Table 1
CIRCUIT PARAMETERS
mq, kg my, kg r, N r, N/m Iy, lit Vio, lit/s Nng, w Py, kPa  V,,lit/s
/m-s -s -s/kPa
25 37.5 1080 1080 0,00022 0,15 50 300 0,167
50 75 200 200 0,0004 0,45 250 500 0,5
75 112.5 169.31 169.31 0,000367 0,579 450 700 0,643

Dependency graphs are plotted based on the input values. For the best perception of graphs

values are taken only those that affect the dependence. The values obtained for the first stage of the
energy circuit are shown in Table 2.

Table 2
RECEIVED INFORMATION FOR HYDRAULIC
Q A1) »,1(2) A,(j2) 02(j2) A;() 3(2)
1 4487.695 81.69 2402.13 81.38 2561.34 81.19
2 2223.296 73.04 1062.83 70.20 1059.75 68.27
3 1465.01 63.72 582.81 51.85 521.78 41.24
4 1089.898 53.48 381.08 19.15 398.57 -10.12
5 875.66 42.20 381.08 -19.15 555.57 -45.07
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Q A, () ¢1(G2) A, () AY) A3(j2) ?3(2)
6 721.38 30.08 490.62 -42.797 777.61 -57.56
7 680.57 17.62 630.697 -55.20 1003.39 -66.98
8 651.71 5.55 776.05 -62.36 1224.03 -71.30
9 651.59 -5.45 920.521 -66.98 1439.13 -74.18
10 671.697 -15.05 1062.83 -70.20 1649.56 -76.24

Based on the results of the calculation, the graphs of the amplitude frequency response and
phase-frequency response are constructed. Further in these graphs are under construction.

— AL (jQ) =—E==A2(jQ) —4—A3 (j0)

5000
4500
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3500
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< 2500
2000
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Figure 6. Amplitude frequency response

——01(Q) —B=—0¢2(jQ) —+—¢3(Q)
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Figure 7. Phase frequency response

For power circuits of the heat transfer calculations are conducted similarly and are written in
Table 4. A graphical view is presented in Figure 8, 9.

Table 3
RECEIVED INFORMATION FOR HEAT TRANSFER
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o2
N, kW ;1WC ,°C2 /W 15,°C2/W  F/m  &m F/m e, W/°C?  t5,°C
1300 8.33 0.002174 0.417 2 0.002 0,00144 0,00144 600
2300 5.55 0.002174 0.278 3 0.003 0,00188 0,00188 700
3300 4.167 0.002174 0.208 4 0.004 0,0020625 0,0020625 800
Table 4
VALUE AMPLITUDE FREQUENCY RESPONSE FOR ENERGY CIRCUIT
Q A, (2) $1(2) A,(j2) ¢, () A3(j2) ¢3(j2)
1 8.746 1.31 5.83 1.18 4.37 0.94
2 8.739 2.62 5.82 2.263 4.36 1.88
3 8.72 3.945 5.81 3.40 4.355 2.76
4 8.70 5.14 5.80 4.50 4.344 3.70
5 8.68 6.35 5.78 5.56 4.324 4.64
6 8.655 7.57 5.76 6.58 431 5.59
7 8.62 8.675 5.73 7.62 4.288 6.56
8 8.57 9.74 5.69 8.59 4.256 7.426
9 8.53 10.81 5.657 9.46 4.226 8.44
10 8.47 11.78 5.60 10.27 4.20 9.33
—t=Al(jQ) =B==A2 (j0) =t A3(j0)
10
7 e— S S o o & ¢ * >
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Figure 8. Amplitude frequency response
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Figure 9. Phase frequency response
Conclusions
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A constructive scheme of the experimental device is proposed and the principle of its
operation is described in detail. The power circuit of the device is drawn up, each link is explained.
Complex impedance, frequency function, amplitude-frequency characteristic and phase-frequency
characteristic are obtained by mathematical transformation of the power circuit. The frequency
response of the circuit is constructed. The description of the experimental setup is completed,
energy circuits for hydraulics and heat transfer are compiled. Energy circuits for heat transfer take
into account such parameters as the mass flow rate of the medium, temperature, thermal resistance,
thermal power. It was found that as the frequency increases, the frequency response of the hydraulic
circuit first decreases and then slowly increases and the amplitude decreases. It is found that the
frequency response of the hydraulic circuit decreases with the increase of frequency, producing a
uniform pulsation.

According to the resulting graphs, one can trace the relationship between two different
properties. It can be seen from the graph that for a particular r value, we reach the frequency
maximum faster.
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